

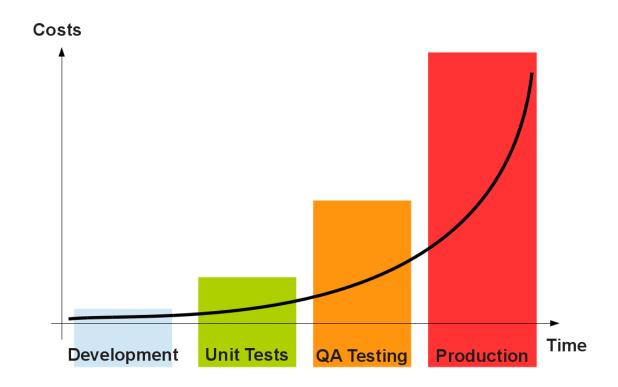
WHMA 2015 Processing Equipment Manufacturer Panel February 19, 2015

Overview of Presentation

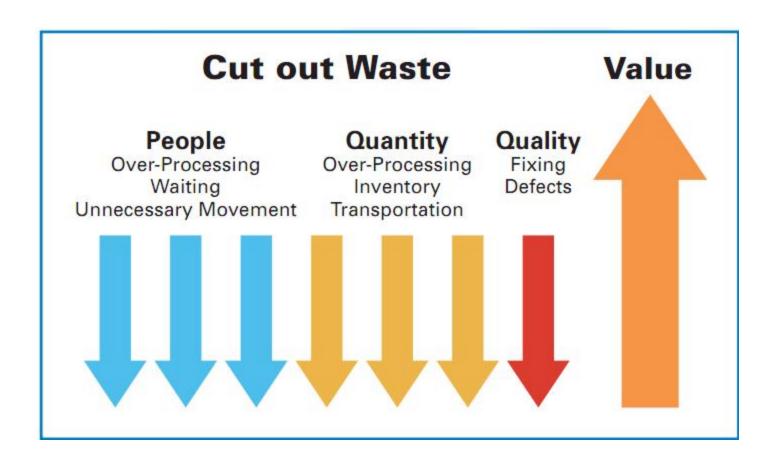
- Introduction
- 5S and Lean Principles
- Performance and Availability Factors with respect to OEE
- Quality with respect to OEE
- Conclusion
 - List of questions that each company should review and rank by importance
- Q/A session

Introduction

"If you cannot Measure it, you cannot Improve it." (Lord Kelvin)



When do you catch a defect?

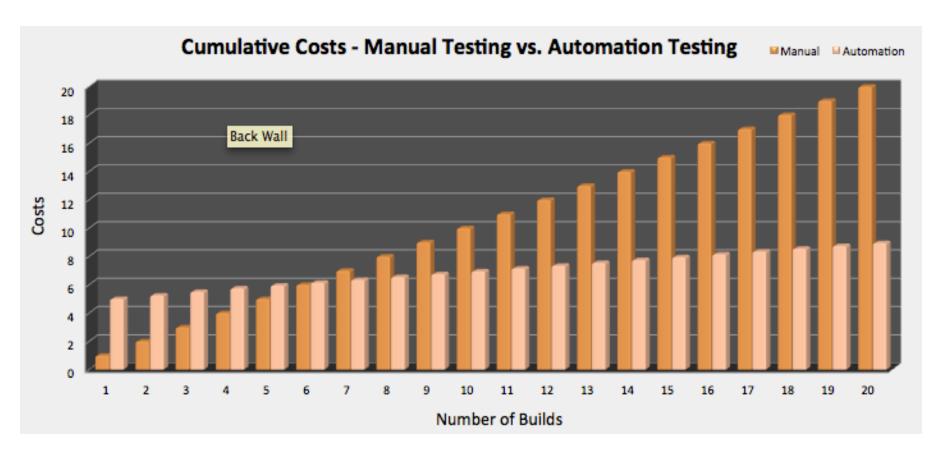


Costs increase the later defects are found

Waste

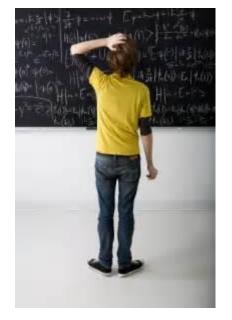
WHMA 2015 Processing Equipment Manufacturer Panel Focus on minimizing:

Lean focuses on the elimination of waste in a process


Storage, processing, inventory, waiting, overproduction... waste!

Initial costs vs. long term costs

5S Explanation


Performance and Availability Factors of OEE

- What is OEE (Overall Equipment Effectiveness)?
 - OEE is essentially the ratio of fully productive Production Time to Planned Production Time. It quantifies how well a machine (or line) performs relative to its design capacity, during the periods when it is scheduled to run.
- Why is OEE important?
 - Supports continuous improvement processes
 - Provides benchmarking between machines, lines and plants
 - Provides a consistent way of measuring production effectiveness
 - Helps to identify, track and reduce losses
 - Shortens equipment ROI through increased utilization
 - Decreases costs through waste elimination
 - Increases customer satisfaction through quality improvement

How is OEE calculated?

- OEE % = Availability % X Performance % X Quality %
- A World Class OEE is a value of 85% or higher
- Typical factories have an OEE of 60%, so most factories have lots of room for improvement
- Each factor has its own world class target value:
 - Availability: 90% or higher
 - Performance: 95% or higher
 - Quality: 99.9% or higher (six sigma)
 - A 90% x P 95% x Q 99.9% = an OEE of 85%

Availability

- Availability is defined as the ratio between Operating Time (Uptime) to Planned Production time
- How is Availability % calculated?
 - Availability % = (Operating Time / Planned Production Time) x 100
- Factors that negatively affect Availability are:
 - Machine Downtime
 - Equipment failures
 - Tooling damage
 - Unplanned maintenance
 - Machine Adjustments / Setups
 - Changeovers
 - Material shortages

Ways to Improve Availability

- To improve availability, you need to keep track of any downtime events and the reasons they occurred
- Implement Preventive Maintenance programs
 - Track number of machine / tooling cycles
 - Replace tooling at specified intervals
 - Perform scheduled maintenance during scheduled downtimes
 - Keep stock of commonly used spare parts
- Reduce Changeover times
 - Utilize machines that feature tool-less changeovers
 - Use programmable machines with memory storage capability
 - Use barcode scanners to call up jobs stored in memory
 - Use a Manufacturing Execution System to optimize jobs and send them automatically to the production machines (reducing keystrokes and possible errors)
- Ensure all required materials and tooling are on hand for the next job

Performance

- Performance is defined as the ratio between the Actual Production Rate to the Ideal Production Rate
- How is Performance % calculated?
 - Performance % = (Actual Run Rate / Ideal Run Rate) x 100
- Factors that negatively affect Performance are:
 - Small stops (< 5 min)
 - Misfeeds or jams
 - Tooling damage
 - Insufficient operator training
 - Equipment age / wear
 - Reduced speed
 - Worn tooling

Ways to Improve Performance

- To improve Performance, you need to track the production rate of your equipment as a ratio to the ideal production rate.
- Ensure operators are properly trained
- Use quality materials (wire, terminals, etc.)
- Implement PM programs to ensure machines are kept in top condition

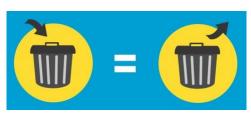
Quality with Respect to OEE

- Quality is defined as the ratio between the number of good parts produced to total parts produced
- How is Quality % calculated?
 - Quality % = (Good Parts / Total Parts) x 100
- Quality is a deal maker or breaker
 - While machine availability and performance are important, poor quality can render productivity improvements useless.

You Can't Build Fast Enough To Make Up For Bad Quality!

Quality

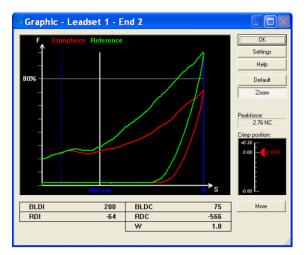
- Factors that negatively affect Quality are:
 - Improper Program Setup
 - Erroneous programming
 - Incorrect or incomplete data
 - Operator entry errors
 - Improper Machine Setup
 - Wrong Tooling
 - Applicators Blades
 - Wrong materials
 - Using low-quality or defective equipment and tooling
 - Worn presses, applicators
 - Poor quality or damaged blades
 - Using low-quality materials
 - Wire Terminals Seals
 - Quality Output Starts with Quality Input



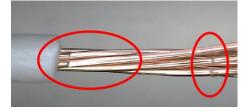
Ways to Improve Quality

- Prevention vs. Detection
 - To improve quality you need to learn from your rejects.
 - Analyze data
 - Do you know your F.P.Y. rates?
 - Perform root-cause analysis
 - Implement process improvements (you can't "test in" quality)
- Assure proper training
 - Setup personnel
 - Machine operators
- Perform Regular Machine Service, Maintenance and Repair
 - Track number of machine / tooling cycles
 - Replace tooling BEFORE it affects quality
- Use available technology
 - Software and Networked machines to eliminate operator entry errors
 - Integrated Quality Tools to assure proper setup and monitor quality during production

Using Automation to Improve Quality in Wire Processing

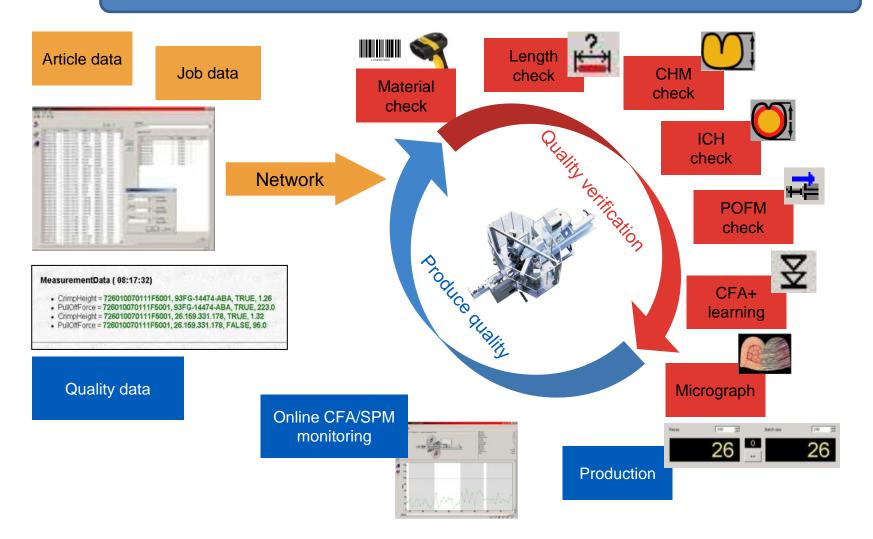


Integrated Quality Tools


Pre Production

- Barcode Scanner
- Crimp Pull Test
- Crimp Height Analysis
- Length Check
- Cross Section Analysis

During Production


- Crimp Force Monitoring
- Automatic Core Detection
- Strip Quality Check

Using Automation to Improve Quality in Wire Processing

Benefits of Tracking Overall Equipment Effectiveness: (= Availability % X Performance % X Quality %)

- Higher availability of machines and equipment
- Increased machine uptime
- On time delivery to the customer
- Improved machine capability
- Increased produced rates
- Improved product quality
- Stable and reliable processes
- The easiest way to track OEE is to network your processing machines and use
 Manufacturing Execution Software to calculate the OEE automatically

Please rate the following statements on a scale of 1 to 5 with 1 being Completely Disagree and 5 being Complete Agree.

	Completely Disagree	Somewhat Disagree	Neutral	Somewhat Agree	Completely Agree
My ERP can interface directly to my MES (Manufacturing Execution System).	1	2	3	4	5
My operators do not have to enter data into machines for each job. (If directly tied into an MES, jobs are automatically programmed into the machine when a work order is scanned.)	1	2	3	4	5
I know exactly how long it takes to set up each job.	1	2	3	4	5
I know exactly when each job was started and completed (using barcode scanners) and average production rate.	1	2	3	4	5
I know when each wire processing machine is running or sitting idle and the reason it is sitting idle.	1	2	3	4	5
I use an MES to optimize work orders in the best sequence, taking changeover times, due dates, available machines and personnel into consideration.	1	2	3	4	5
I integrate mandatory Quality Assurance tests (crimp height, pull test, micrograph, etc.) into the process.	1	2	3	4	5
I have quality safeguards to ensure the operators are using the correct materials (wire, terminals, etc.) A barcode scan of each material could provide a solution to this problem.	1	2	3	4	5
I know what machine, tool or operator produced which circuit and when.	1	2	3	4	5
I maintain a central database of crimping specs, material specs, pull force data, engineering change notices, etc. that is available for all machines.	1	2	3	4	5
I know what obstacles I will encounter, and how I will get around them.	1	2	3	4	5
I know the exact percentage of completion of each order on the factory floor and which orders are behind schedule and why.	1	2	3	4	5
I can easily collect and use data on my processes.	1	2	3	4	5
I know how many cycles each machine, applicator or tool has produced and when maintenance should be scheduled.	1	2	3	4	5
I have cost-reduction targets in place.	1	2	3	4	5
I have cost-reduction efforts in place.	1	2	3	4	5
I can easily identify and eliminate unnecessary costs.	1	2	3	4	5
I am identifying problems/defects in a timely manner.	1	2	3	4	5
I know the Overall Equipment Effectiveness (OEE) of every wire processing machine in my entire factory.	1	2	3	4	5